
SELF-MAGNETIC FIELD EFFECTS ON ELECTRON EMISSION IN 
PLANAR DIODES AS THE CRITICAL CURRENT IS APPROACHED* 

P.F. Ottinger, G. Cooperstein, J.W. Schumer, and S.B. Swanekamp** 
Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 

 

                                            
* Work supported by ONR and DOE through SNL, LANL, and LLNL. 
** JAYCOR, Inc, McLean, VA 22102. 

Abstract 
 
 The self-magnetic field associated with the current in a 
planar diode is shown to reduce electron emission below 
the Child-Langmuir current density.  As the magnetic 
field increases, the diode current is limited to the critical 
current.  Here, a 1-D analysis is carried out to calculate 
the suppressed current density in the presence of a 
transverse magnetic field.  The emitted current density is 
found to decrease modestly until the magnetic field 
associated with the critical current is reached, at which 
point the emission shuts off abruptly.  The 1-D analysis 
remains valid until orbit crossing occurs as the current 
approaches the critical current.  The minimum diode 
length required to reach critical current is also derived.  
 
 

I. INTRODUCTION 
 
 High power vacuum diodes are used to produce intense 
electron beams for many applications.  When self-
magnetic field effects are negligible and the cathode is a 
space-charge-limited (SCL) emitter, Child-Langmuir flow 
is obtained[1].  Here, the effect of the diode self-magnetic 
field on the locally emitted current density is investigated.  
Results presented here are applicable to cylindrical diodes 
with an anode-cathode gap D that is much less than the 
diode cathode radius Rc.  In this case, the diode can be 
treated as planar and, when the magnetic field is 
negligible, electrons cross the diode with straight-line 
trajectories as illustrated in Fig. 1a.  However, when the 
self-magnetic field associated with the diode current 
becomes large enough to significantly deflect the electron 
path as it crosses the diode gap as illustrated in Fig. 1b, 
the increased electron space charge density in the gap 
above the emission site reduces the local emission below 
the Child-Langmuir current density.  At high magnetic 
field, the diode current is limited to the critical current 
Icrit, which is obtained when the electrons reach the anode 
at grazing incidence (or equivalently, the �electron 
gyroradius� equals the gap size)[2,3].  Critical current 
flow is illustrated in Fig. 1c. 
 A 1-D analysis is used to calculate the suppressed 
current density in the presence of a transverse magnetic 
field.  The problem is similar to that of calculating the 
Hull current in a crossed field gap[4].  In treating electron 
flow in crossed field gaps, the Llewellyn approach is  

Figure 1. Schematic of diode electron flow for (a) Id0 <<  
Icrit , (b) Id0 < Icrit , and (c) Id0 = Icrit . 

 
typically used[4], whereas, here, Poisson�s equation is 
solved by direct integration.  Also, in the case considered 
here, the magnetic field is produced by the diode current 
itself and increases with distance along the gap causing 
the curvature of the electron trajectories to increase with 
distance as well (see Fig. 1c). 
 This problem is of interest for determining the 
minimum length Lcrit of a diode designed to run at Icrit.  
This situation arises when an electron beam pinch is 
desired to concentrate the electron-beam energy, while 
minimizing losses to ion current which are proportional to 
the diode length in cylindrical diodes[5] (or diode radius 
in pinched-beam diodes[6]).  Although this analysis does 
not include ion current, the desired minimum diode length 
with ion current can still be reasonably estimated.  For a 
nonrelativistic planar diode, it is well known that the SCL 
electron current density is enhanced by a factor of 1.86 
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when ion current flows[7], while the scaling with diode 
voltage and gap remains the same.  Thus, it is assumed 
here that the minimum diode length for bipolar flow BP

critL  

is to first order simply BP
critL  = Lcrit/1.86. 

 
 

II. SOLUTION WITH B0 ≠≠≠≠ 0 
 
 The planar diode geometry considered here is 
illustrated in Fig. 1.  A voltage V is applied across the 
electrodes, and a uniform magnetic field is applied 
transverse to the electron flow in the y direction.  The 
current Id0 is emitted over an axial length L as shown in 
Fig. 1a.  The problem can be cast in terms of the electric 
potential Φ(x) and the magnetic vector potential Az(x) = -
B0x, where B0 > 0, Φ(0) = 0, and Φ(D) = V.  For SCL 
flow in equilibrium, Ex(0) = dΦ/dx(0) = 0.   Because y 
and z are ignorable coordinates, their canonical momenta 
are conserved.  An expression for vx(x) is obtained from 
conservation of energy.  Thus, 
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where ωce = eB0/mec, e and me are the electron charge and 
mass, c is the speed of light, and vx(0) = vy(0) = vz(0) = 0.  
Note that for B0 = 0, vx(D) = v0 = (2eV/me)1/2, which is 
the speed obtained by an electron in crossing the gap. 
 Because vx

2 ≥ 0, Eq. (1) shows that Id0 ≤ Icrit (or ωce ≤  
crit
ceω ) where 
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and B0 ≡ 2Id0/cRc so that these planar results can be 
related to problems in cylindrical geometry with Rc >> D. 

 In equilibrium with a uniform applied magnetic field 
(so that d/dz = 0), the continuity equation shows that the 

Figure 2. Plots of current density J0/JCL (solid) and x(1)/D 
(dash) as functions of ωce/ crit

ceω . 

 current density Jx(x) = J0 is constant and  
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with J0 > 0.  In the next section where B0 is allowed to 
vary in z along the diode length, it is assumed that the 
equations for vx and ne in Eqs. (1) and (3) still apply as 
long as d/dx >> d/dz ~ 0.  Using the expression for ne 
given in Eq. (3), Poisson�s equation becomes 
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Here, however, it is convenient to rewrite the equation as 
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where S(x) = vx
2(x) and vx

2(x) is given in Eq. (1).  The 
first integral can be obtained by multiplying both sides of 
Eq. (5) by dS/dx and integrating.  This yields 
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where the two boundary conditions, S(0) = 0 and dS/dx(0) 
= 0, have been used.  The upper sign applies in the case 
when vx is increasing, while the lower sign applies when 
vx is decreasing.  This occurs when Id0 → Icrit where the 
electron orbit has been significantly deflected by the 
magnetic field so that energy is being transferred into 
axial motion as the electron approaches the anode.  The 
second integral can be obtained by direct integration, 
yielding for dS/dx > 0  
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where vx(x) is given in Eq. (1) and S(0) = vx
2(0) = 0 has 

been used.  This solution applies for x < x(1) where x(1) = 
4π2eJ0/meωce

3 is defined as the position where vx stops 
increasing (i.e., where dS/dx = 0).  The value of x(1) 
depends on the magnetic field strength through J0(ωce) 
and ωce directly where ωce = )1(

ceω  when x(1) = D.  It can be 

shown[8] that )1(
ceω  = π crit

ceω /(π2 + 2)1/2. 
 When x(1) > D, Eq. (7)  applies for all 0 ≤ x ≤ D.  When 
x(1) ≤ D, Eq. (7) applies for 0 ≤ x ≤ x(1) and Eq. (6) must 
be solved again (using the lower sign) for x(1) ≤ x ≤ D.  
That solution is then matched to the solution in Eq. (7) at 
x = x(1), yielding 
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Assuming that x(1) > D, the final boundary condition Φ(D) 
= V can be applied to Eq. (7) to find the eigenvalue 
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J0(ωce).  Using J0, Eq. (7) then can be solved numerically 
for Φ(x).  When x(1) < D, Eq. (8) with Φ(D) = V is used to 
find J0(ωce), and then Eqs. (7) and (8) are used to solve for 
Φ(x).   
 When ωce = 0, it can be shown[8] that the classical 
Child-Langmuir result is obtained with  
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In this case, ne(D) = n0 = JCL/ev0.  When ωce = crit
ceω , vx(D) 

= 0 and the electrons reach the anode at grazing 
incidence.  In this case, Eq. (8) can easily be solved for 
the eigenvalue J0( crit

ceω ) ≡ J0
crit, yeilding 
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It can also be shown[8] that dJ0/dωce → -∞ as ωce → crit
ceω .  

Thus, the electron emission abruptly shuts off at ωce = 
crit
ceω .  The solutions of J0/JCL and x(1)/D (for x(1) < D) as 

functions of ωce/ crit
ceω  are shown in Fig. 2.  Values of the 

various parameters are also shown in Table 1 for the 
special cases ωce = 0, )1(

ceω , and crit
ceω . 

 
 
III. MINIMUM DIODE LENGTH FOR Icrit 

   
If laminar flow is assumed in the diode gap, then the 

above analysis can be used to calculate the diode current 
Id(z) as a function distance along the cathode.  Id(z) 
increases from zero at z = 0 to the total diode current Id0 at 
z = L as shown in Fig. 1.  The local self-magnetic field is 
given by B0(z) = 2Id(z)/cRc and determines the local 
current density from J0(ωce) as given in Fig. 2.  Here, this 
local current density is denoted by J0(z) and dId(z)/dz ≡ 
2πRcJ0(z).  This diode configuration is illustrated in Fig. 
1a for Id0 << Icrit, in Fig. 1b for Id0 < Icrit, and in Fig. 1c for 
Id0 = Icrit.  The minimum diode length needed to obtain 
critical current then is determined by 

Figure 3. Plots of J0/JCL (solid), Id/Icrit (dash), and ∆/πD 
(dot) as functions of z/L0

crit . 
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where Icrit is defined in Eq. (2).   A zero order estimate for 
Lcrit can be obtained by assuming that J0(z) is uniform in z 
and equal to JCL, yielding L0

crit= 9D/2β2, where, β = v0/c.  
Results from integrating Eq. (11) are plotted in Fig. 3 and 
show that Lcrit ~ 1.07L0

crit.  This provides both scaling for 
and a reasonable estimate of the minimum diode length 
required to reach critical current.   
 If ∆(z) is the axial distance that an electron emitted at z 
is deflected by the magnetic field while crossing the gap 
(see Fig. 3), 
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where T is the gap crossing time and the position z along 
the cathode is associated with the local value of B0(z) [or 
equivalently ωce(z)].  Again, it is convenient to rewrite 
this integral in terms of S using 
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from Eq. (6), vx = S1/2 from the definition of S, and vz(x) 
= -ωcex from Eq. (1) where Eqs. (7) and (8) are needed to  
write x in terms of S.  When x(1) ≥ D, only Eq. (7) is 
needed.   When x(1) < D, the integral must be separated 
into two parts, using Eq. (7) for x in the interval 0 ≤ x ≤ 
x(1) and using Eq. (8) in the interval  x(1) ≤ x ≤ D.  ∆(z) is 
plotted in Fig. 3. 
 The analysis presented in this section remains valid 
until orbit crossing occurs.  The orbit of an electron 
emitted from the cathode at z + δ crosses the orbit of an 
electron emitted at z if z - ∆(z) > (z + δ) - ∆(z + δ).  By 
Taylor expanding ∆(z + δ) for δ << z, it can be shown that 
the condition for orbit crossing becomes d∆/dz > 1.  In 
order to evaluate this derivative, expressions for dJ0/dz 
and dωce/dz are needed.  First, note that dJ0/dz = 
(dJ0/dωce)dωce/dz where the solution for J0(ωce) is shown 
in Fig. 2 and its differentiation with respect to ωce is 
straight forward.  Then note that dωce/dz = 

Figure 4. Plot of  d(∆/D)/d(z/L0
crit) as a function of z/L0

crit. 
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Table 1. Special values for various parameters. 
 ωce = 0 ωce = ωce

(1) ωce = ωce
crit 

ωce/ωce
crit 0 π/(π2 + 4)1/2 ~ 0.84 1 

J0/JCL 1 9π2/2(π2 + 4)3/2 ~ 0.86 9/4π ~ 0.72 
x(1)/D +∞ 1 0.5 

ne(D)/n0 1 9π2/4(π2 + 4) ~ 1.6 +∞ 
vx(D)/v0 1 2/(π2 + 4)1/2 ~ 0.54 0 
vz(D)/v0 0 -π/(π2 + 4)1/2 ~ -0.84 -1 
∆(D)/D 0 (π2 - 4)/2π ~ 0.93 π 

 
 (2e/mec2Rc)dId/dz = 4πeJ0(z)/mec2 where Id(z) and J0(z) 
are shown in Fig. 3.  A plot of d∆(z)/dz is shown in Fig. 4  
where ∆(z) has been normalized to D and z has been 
normalized to L0

crit.  With this normalization, the 
condition for orbit crossing becomes 
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For this nonrelativistic analysis (i.e., β << 1), Eq. (13) and 
the results presented in Fig. 4 show that orbit crossing 
only occurs very close to Lcrit.  For example, orbit 
crossing first occurs at z ~ 1.05L0

crit for β = 0.5 (see 
dashed line in Fig. 4) and rapidly approaches Lcrit ~ 
1.07L0

crit (see dotted line in Fig. 4) as β decreases.  Thus, 
this analysis is valid over nearly the full diode length. 
 As discussed in Sec. I, the minimum diode length 
required to reach critical current when ions are present  
decreases to BP

critL  = Lcrit/1.86 = 2.6D/β2.  This assumes 
that the ion current is much less than the electron current 
and that D << R, because it has been shown recently that 
the ion enhancement factor of 1.86 increases with aspect 
ratio Rc/Ra for cylindrical diodes with the cathode radius 
Rc larger than the anode radius Ra[9]. 
 
 

IV. SUMMARY 
 
  The emitted current density is found to only decrease 
modestly with magnetic field until the self-magnetic field 
associated with the critical current is reached where the 
emission shuts off abruptly.  The 1-D analysis remains 
valid until orbit crossing occurs which has been shown to 
only occur very close to the full diode length when the 
current approaches the critical current.  Thus, the estimate 
obtained for the diode length required to reach critical 
current is accurate.  It is also predicted that, when ion 
current flows, the minimum diode length required to 
obtain critical current decreases by a factor of 1.86.  
Extending these results to the relativistic regime and 

including ions in the analysis will require a numerical 
solution of Poisson�s equation and is the subject for future 
work. 
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